9,926 research outputs found

    The Numerical Simulation of Radiative Shocks I: The elimination of numerical shock instabilities using a localized oscillation filter

    Get PDF
    We address a numerical instability that arises in the directionally split computation of hydrodynamic flows when shock fronts are parallel to a grid plane. Transverse oscillations in pressure, density and temperature are produced that are exacerbated by thermal instability when cooling is present, forming post--shock `stripes'. These are orthogonal to the classic post--shock 'ringing' fluctuations. The resulting post--shock `striping' substantially modifies the flow. We discuss three different methods to resolve this problem. These include (1) a method based on artificial viscosity; (2) grid--jittering and (3) a new localized oscillation filter that acts on specific grid cells in the shock front. These methods are tested using a radiative wall shock problem with an embedded shear layer. The artificial viscosity method is unsatisfactory since, while it does reduce post--shock ringing, it does not eliminate the stripes and the excessive shock broadening renders the calculation of cooling inaccurate, resulting in an incorrect shock location. Grid--jittering effectively counteracts striping. However, elsewhere on the grid, the shear layer is unphysically diffused and this is highlighted in an extreme case. The oscillation filter method removes stripes and permits other high velocity gradient regions of the flow to evolve in a physically acceptable manner. It also has the advantage of only acting on a small fraction of the cells in a two or three dimensional simulation and does not significantly impair performance.Comment: 20 pages, 6 figures, revised version submitted to ApJ Supplement Serie

    A study of air-to-ground sound propagation using an instrumented meteorological tower

    Get PDF
    The results of an exploratory NASA study, leading to a better understanding of the effects of meteorological conditions on the propagation of aircraft noise, are reported. The experimental program utilized a known sound source fixed atop an instrumented meteorological tower. The basic experimental scheme consisted of measuring the amplitude of sound radiated toward the ground along a line of microphones fixed to a tower guy wire. Experimental results show the feasibility of this approach in the acquisition of data indicating the variations encountered in the time-averaged and instantaneous amplitudes of propagated sound. The investigation included a consideration of ground reflections, a comparison of measured attenuations with predicted atmospheric absorption losses, and an evaluation of the amplitude fluctuations of recorded sound pressures

    Dyson's Brownian Motion and Universal Dynamics of Quantum Systems

    Full text link
    We establish a correspondence between the evolution of the distribution of eigenvalues of a N×NN\times N matrix subject to a random Gaussian perturbing matrix, and a Fokker-Planck equation postulated by Dyson. Within this model, we prove the equivalence conjectured by Altshuler et al between the space-time correlations of the Sutherland-Calogero-Moser system in the thermodynamic limit and a set of two-variable correlations for disordered quantum systems calculated by them. Multiple variable correlation functions are, however, shown to be inequivalent for the two cases.Comment: 10 pages, revte

    Theory for high spin systems with orbital degeneracy

    Full text link
    High-spin systems with orbital degeneracy are studied in the large spin limit. In the absence of Hund's coupling, the classical spin model is mapped onto disconnected orbital systems with spins up and down, respectively. The ground state of the isotropic model is an orbital valence bond state where each bond is an orbital singlet with parallel spins, and neighbouring bonds interact antiferromagnetically. The possible relevance to the transition metal oxides are discussed.Comment: 4 page, three figures, to appear in Phys. Rev. Let

    Supersymmetry, Shape Invariance and Solvability of AN1A_{N-1} and BCNBC_{N} Calogero-Sutherland Model

    Get PDF
    Using the ideas of supersymmetry and shape invariance we re-derive the spectrum of the AN1A_{N-1} and BCNBC_N Calogero-Sutherland model. We briefly discuss as to how to obtain the corresponding eigenfunctions. We also discuss the difficulties involved in extending this approach to the trigonometric models.Comment: 15 pages, REVTeX,No figure

    Bunching Transitions on Vicinal Surfaces and Quantum N-mers

    Full text link
    We study vicinal crystal surfaces with the terrace-step-kink model on a discrete lattice. Including both a short-ranged attractive interaction and a long-ranged repulsive interaction arising from elastic forces, we discover a series of phases in which steps coalesce into bunches of n steps each. The value of n varies with temperature and the ratio of short to long range interaction strengths. We propose that the bunch phases have been observed in very recent experiments on Si surfaces. Within the context of a mapping of the model to a system of bosons on a 1D lattice, the bunch phases appear as quantum n-mers.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let

    Three-Dimensional Simulations of a Starburst-Driven Galactic Wind

    Full text link
    We have performed a series of three-dimensional simulations of a starburst-driven wind in an inhomogeneous interstellar medium. The introduction of an inhomogeneous disk leads to differences in the formation of a wind, most noticeably the absence of the ``blow-out'' effect seen in homogeneous models. A wind forms from a series of small bubbles that propagate into the tenuous gas between dense clouds in the disk. These bubbles merge and follow the path of least resistance out of the disk, before flowing freely into the halo. Filaments are formed from disk gas that is broken up and accelerated into the outflow. These filaments are distributed throughout a biconical structure within a more spherically distributed hot wind. The distribution of the inhomogeneous interstellar medium in the disk is important in determining the morphology of this wind, as well as the distribution of the filaments. While higher resolution simulations are required in order to ascertain the importance of mixing processes, we find that soft X-ray emission arises from gas that has been mass-loaded from clouds in the disk, as well as from bow shocks upstream of clouds, driven into the flow by the ram pressure of the wind, and the interaction between these shocks.Comment: 37 pages, 16 figures, mpg movie can be obtained at http://www.mso.anu.edu.au/~jcooper/movie/video16.mpg, accepted for publication in Ap

    Quantum spin models with exact dimer ground states

    Full text link
    Inspired by the exact solution of the Majumdar-Ghosh model, a family of one-dimensional, translationally invariant spin hamiltonians is constructed. The exchange coupling in these models is antiferromagnetic, and decreases linearly with the separation between the spins. The coupling becomes identically zero beyond a certain distance. It is rigorously proved that the dimer configuration is an exact, superstable ground state configuration of all the members of the family on a periodic chain. The ground state is two-fold degenerate, and there exists an energy gap above the ground state. The Majumdar-Ghosh hamiltonian with two-fold degenerate dimer ground state is just the first member of the family. The scheme of construction is generalized to two and three dimensions, and illustrated with the help of some concrete examples. The first member in two dimensions is the Shastry-Sutherland model. Many of these models have exponentially degenerate, exact dimer ground states.Comment: 10 pages, 8 figures, revtex, to appear in Phys. Rev.

    Probable Gravitational Microlensing towards the Galatic Bulge

    Full text link
    The MACHO project carries out regular photometric monitoring of millions of stars in the Magellanic Clouds and Galactic Bulge, to search for very rare gravitational microlensing events due to compact objects in the galactic halo and disk. A preliminary analysis of one field in the Galactic Bulge, containing {430,000\sim430,000} stars observed for 190 days, reveals four stars which show clear evidence for brightenings which are time-symmetric, achromatic in our two passbands, and have shapes consistent with gravitational microlensing. This is significantly higher than the 1\sim 1 event expected from microlensing by known stars in the disk. If all four events are due to microlensing, a 95\% confidence lower limit on the optical depth towards our bulge field is 1.3×1061.3 \times 10^{-6}, and a ``best fit" value is τ1.6×106/ϵ\tau \approx 1.6 \times 10^{-6}/\epsilon,where ϵ\epsilon is the detection efficiency of the experiment, and ϵ<0.4\epsilon < 0.4. If the true optical depth is close to the ``best fit" value, possible explanations include a ``maximal" disk which accounts for most of the galactic circular velocity at the solar radius, a halo which is centrally concentrated, or bulge-bulge microlensing.Comment: submitted to Astrophysical Journal Letters, 10 pages text as uuencoded compressed PostScript, 5 figures and paper also available via anonymous ftp from merlin.anu.edu.au in /pub/kcf/mach
    corecore